Traffic Sign Recognition using Python Source Code

ABSTRACT
               Traffic sign recognition is an important but challenging task, especially for automated driving and driver assistance. Its accuracy depends on two aspects: feature exactor and classifier. Current popular algorithms mainly use convolutional neural networks (CNN) to execute feature extraction and classification. Such methods could achieve impressive results but usually on the basis of an extremely huge and complex network. What’s more, since the fully-connected layers in CNN form a classical neural network classifier, which is trained by conventional gradient descent-based implementations, the generalization ability is limited. The performance could be further improved if other favorable classifiers are used in python.

PROJECT OUTPUT

PROJECT VIDEO

Contact:
Mr. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +917276355704
Email: roshanphelonde@rediffmail.com
Share:

Matlab Code for Image Encryption and Decryption Using AES Algorithm Source Code

ABSTRACT
           In today’s world data security is the major problem which is to be face. In order to secure data during communication, data storage and transmission we use Advance encryption standard(AES). AES is a symmetric block cipher intended to replace DES for commercial applications. The AES algorithms use to secure data from unauthorized user. The available AES algorithm is used for text data as well as for image data. In this project an image is given as input to AES encryption algorithm which gives encrypted output. This encrypted output is given as input to AES decryption algorithm and original image is regained as output. The AES algorithm for image encryption and decryption which synthesizes and simulated with the help of Matlab.

PROJECT OUTPUT

PROJECT VIDEO

Contact:
Mr. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +917276355704
Email: roshanphelonde@rediffmail.com
Share:

Matlab Code for Iris Recognition Using Image Processing Full Source Code

ABSTRACT
             This project presents an iris coding method for effective recognition of an individual. The recognition is performed based on a mathematical and computational method. It consists of calculating the differences coefficients of overlapped angular patches from the normalized iris image for the purpose of feature extraction. Iris recognition belongs to the biometric identification. Biometric identification is a technology that is used for the identification an individual based on ones physiological or behavioral characteristics. Iris is the strongest physiological feature for the recognition process because it offers most accurate and reliable results. Iris recognition process mainly involves three stages namely, iris image preprocessing, feature extraction and template matching. In the pre-processing step, iris localization algorithm is used to locate the inner and outer boundaries of the iris. Detected iris region is then normalized to a fixed size rectangular block. In the feature extraction step, texture analysis method is used to extract significant features from the normalized iris image.

PROJECT OUTPUT

PROJECT VIDEO

Contact:
Mr. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +917276355704
Email: roshanphelonde@rediffmail.com
Share:

Contact Us

Name

Email *

Message *

Blog Archive

Popular posts